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Summary
Objectives: To review the issues that have arisen with the advent of
translational research in terms of integration of data and knowledge,
and survey current efforts to address these issues.
Methods: Using examples form the biomedical literature, we
identified new trends in biomedical research and their impact on
bioinformatics. We analyzed the requirements for effective knowledge
repositories and studied issues in the integration of biomedical
knowledge.
Results: New diagnostic and therapeutic approaches based on gene
expression patterns have brought about new issues in the statistical
analysis of data, and new workflows are needed are needed to
support translational research. Interoperable data repositories based
on standard annotations, infrastructures and services are needed to
support the pooling and meta-analysis of data, as well as their
comparison to earlier experiments. High-quality, integrated
ontologies and knowledge bases serve as a source of prior
knowledge used in combination with traditional data mining
techniques and contribute to the development of more effective data
analysis strategies.
Conclusion: As biomedical research evolves from traditional clinical
and biological investigations towards omics sciences and
translational research, specific needs have emerged, including
integrating data collected in research studies with patient clinical
data, linking omics knowledge with medical knowledge, modeling
the molecular basis of diseases, and developing tools that support
in-depth analysis of research data. As such, translational research
illustrates the need to bridge the gap between bioinformatics and
medical informatics, and opens new avenues for biomedical
informatics research.
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Access to information, analysis of data,
and integration of knowledge are key
components of biomedical research.
Scientists and physicians must be able
to integrate their data with other data,
to combine information from multiple
sources, and to compare their results to
prior knowledge. This paper illustrates
the role of knowledge in biomedical
research, with focus on omics disci-
plines, and surveys current efforts to
address the needs of biomedical re-
searchers for better access to informa-
tion and better integration of data and
knowledge.

1   Trends in Biomedical Re-
search and their Impact on
Bioinformatics
The current era of biomedical research
can be characterized by what NIH Di-
rector E.A. Zerhouni calls the "four Ps"
of medicine: Predictive, Personalized,
Preemptive and Participatory1. Risk fac-
tors of diseases must be identified early
in order to adapt counter-measures, es-
pecially for long-term, chronic diseases.
Treatments must be tailored in order
to take into account the characteristics
of individual patients. Shifting the fo-
cus of medicine from the current doc-
tor-centric, curative paradigm to pre-

venting diseases will require the active
involvement of patients. With the ad-
vent of personalized medicine, bio-
markers, including genetic markers, will
be tested for each patient in order to
diagnose specif ic forms of diseases,
predict disease progression and patient
outcome, and propose the best thera-
peutic options. This scenario puts
genomics and pharmacogenomics at the
centre of medicine [1]. This new vi-
sion of personalized medicine is sup-
ported by very active biomedical re-
search. As the role of "omics"
disciplines2 in biomedical research be-
comes more important, classical clini-
cal studies must be adapted to these new
approaches. New models of diseases
have emerged from these studies. The
genes identif ied through omics studies
provide clues to possible pathogenetic
mechanisms and are likely to be useful
in developing diagnostic tests and
adapting therapeutic responses. Discov-
eries typically begin at "the bench" with
basic research. Then they must be trans-
lated into practical applications and
progress to the clinical level, the
patient's "bedside." In parallel, clinical
researchers make novel observations
about the nature and progression of dis-
ease that often stimulate basic investi-
gations. This exchange of information

1 http://nihroadmap.nih.gov/

2 omics is a generic term for new disciplines enabled by
high-throuput technologies, such as genomics,
transcriptomics, and proteomics
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describes translational research or trans-
lational medicine: researchers and phy-
sicians applying newly gained knowl-
edge to the clinic - and back again to
the bench3. Such recent changes in bio-
medical research have brought about
new challenges for bioinformatics and
medical informatics. The analysis of
genomic studies and the new workflows
between research and health care gen-
erate greater demand for accessing and
integrating information.

1.1   New Diagnostic and Therapeutic
Approaches
Disease classification based on gene
expression patterns. Over the past de-
cade, biomedical research has evolved
to mine gene expression prof iles for
clues to the pathogenesis, prognosis and
treatment of human diseases. In oncol-
ogy, for example, this research rests on
the premise that extraordinary insights
into the molecular basis of cancer can
be obtained by analyzing gene expres-
sion in patient-derived tumor samples,
in addition to experimental models.
DNA microarrays (DNA chips) are
used to monitor the gene expression
(i.e., a proxy for gene activity) of thou-
sands of genes simultaneously across the
human genome. This technique involves
the extraction of RNA from tumor
samples and its subsequent fluorescent
labeling and hybridization to an array
of DNA probes. Microarrays covering
nearly the entire human genome are
now available. In a series of experi-
ments, Golub demonstrated that the
classif ication of cancer -- specif ically
two principal forms of acute leukemia
-- could be achieved by using DNA
microarrays to monitor gene expres-
sion, without a prior molecular under-

standing of this distinction [2]. This
f inding implies that such methodolo-
gies can be applied to the molecular
dissection of cancers. This approach
has been used for the molecular clas-
sification of many tumor types, includ-
ing lymphoma (e.g., [3]), prostate can-
cer (e.g., [4]), brain tumors (e.g. [5]),
and lung cancer (e.g., [6]). Similar
approaches have demonstrated that pat-
terns of gene expression (or gene ex-
pression "signatures") may be found
across different tumor types. For ex-
ample, Golub et al identif ied a signa-
ture of metastatic propensity across
prostate, breast, and lung cancers, sug-
gesting that a genetic test performed at
the time of diagnosis might predict the
future behavior of some tumors [7].
While most studies of gene expression
have been carried out on tissue samples,
some have used peripheral blood
samples (e.g. [8]), thus extending the
applicability of this technique.
Pharmacogenomics. Gene expression-
based approaches are also widely used
in pharmacology (e.g., [9]). The ex-
pectation here is that genomic ap-
proaches might lead to the discovery
of molecules and compounds capable
of modulating biological processes in
cells. Drug discovery typically starts
with prior knowledge of a target gene
that is biologically relevant to a dis-
ease state (e.g., a gene mutation in can-
cer). The protein product of this gene
is then biochemically purif ied, and a
collection of compounds screened in
vitro for their ability to bind to the pro-
tein. Novel approaches to drug discov-
ery are based on genomics. Gene ex-
pression-based methods are used to
identify candidate drugs that modulate
previously intractable targets. These
genes and gene products can serve as
potential therapeutic targets or tools in
addition to providing diagnostic and
prognostic markers, as well as end-
points for clinical trials. In cancer re-

search, this approach has been applied
to the discovery of substances that may
induce the maturation of abnormal cells
(e.g., acute myeloid leukemia cells), in-
hibit androgen or estrogen action in can-
cer cells, inhibit angiogenesis associ-
ated with tumor cell proliferation or
inhibit the activity of the causal pro-
tein in some tumors (e.g., Ewing sar-
coma [10]).

The functional consequences of ge-
netic polymorphisms have been exam-
ined for several drug-metabolizing en-
zymes [11]. Variants leading to reduced
or increased enzymatic activity com-
pared to the wild-type alleles have been
identified. The possible application of
genotyping has been discussed for sev-
eral pathologic conditions. Among
many other examples, the acetylator
status has long been used for predict-
ing isoniazid-induced hepatic toxicity
in tuberculosis [12], and associations
between genetic variability and re-
sponse to beta-adrenergic medications
have been explored [13]. The associa-
tion between gene expression and re-
sponse to treatment holds the promise
of personalized medicine, as doctors
will be able to individualize drug
therapy and provide specif ic therapies
to those most likely to respond, while
avoiding therapies in those most likely
to suffer adverse effects.

1.2   New Issues Related to the
Analysis of Genomic Studies
Clinical trials provide an evaluation
framework for interventions. Param-
eters are measured in patients under
different types of interventions and the
values of these parameters are compared
across groups of subjects in order to
identify associations between interven-
tions and outcomes. Traditional clini-
cal trials generally involve many sub-
jects in which only few parameters are

3 http://nihroadmap.nih.gov/clinicalresearch/
overview-translational.asp



IMIA Yearbook of Medical Informatics 2008

                  Accessing and Integrating Data and Knowledge for Biomedical Research

93

measured. Conversely, omics studies
typically generate a large number of
measurements on the limited number
of test subjects (relatively to the num-
ber of parameters measured). This im-
balance has created new issues involv-
ing statistics and bias [14]. Omics studies
offer a potentially powerful approach
to identifying new biomarkers, but
many of them are plagued by a lack of
consistency and reproducibility (e.g.,
[15]). In principle, the inconsistency
may be due to false positive studies,
false negative studies or true variabil-
ity among heterogeneous groups. In
order to avoid biases and get more re-
liable results, the data from individual
experiments at different centers could
be pooled and public data repositories
used for comparative data analysis [16].
Moreover, the goal of omics approaches
is also to acquire comprehensive, inte-
grated understanding of biology by
studying all biological processes in ad-
dition to analyzing parameters individu-
ally (e.g., [17]). Therefore, solutions
exploiting prior knowledge about gene
functions (e.g., in gene annotations
databases) and multi-scale biological
models have been proposed and are dis-
cussed in section 3.3.

1.3   New Workflows in Biomedical
Research
In the context of translational research
and translational medicine, information
sharing between medical research, epi-
demiology and clinical medicine has
been identif ied as a strong require-
ment. Translational research creates a
bidirectional information transfer that
accelerates trials and evaluates their
clinical potential. In this framework,
clinical data and biomarkers must be
collected early in order to extract new
knowledge and form new hypotheses
from the mass of collected data. There-

fore the relationship between research,
population studies and health care rests
on the integration of the data and
knowledge from these three areas: re-
search (scientif ic publications, public
databases, experimental results), epide-
miology (e.g., cohort studies), and
healthcare (clinical data stored in pa-
tient records).

Two main challenges have to be over-
come when automatically interrelating
data from these different areas. First,
these data are annotated to different
terminologies and data referring to the
same entity may be represented by dif-
ferent identifiers [18]. For instance, the
disease "acute myeloid leukemia" is
coded D015470 in bibliographic data-
bases indexed with MeSH, 91861009
in clinical records coded with
SNOMED Clinical Terms®
(SNOMED CT®)4, and C3171 in re-
search records annotated to the NCI
Thesaurus5 [19]. The second issue is that
the data to be integrated are comple-
mentary in nature but intrinsically dif-
ferent (omics - pathology - anatomy -
physiology). Ontologies have been
proven useful for data integration (e.g.,
[20, 21]). Several ontologies have been
developed in bioinformatics and in the
biomedical domain. However, they are
still incomplete (neither all concepts nor
relations are present) and fragmented
(ontologies are orthogonal and few
bridges are established between
complementary ontologies) (e.g., [22]).
Enrichment and integration of biomedi-
cal ontologies are therefore important
stakes for translational medicine and
bioinformatics, as well as for the fu-
ture links between these two disciplines
(e.g., [23, 24, 25])

2   Effective Data Repositories
Pooling experimental data requires the
standard annotation of the experiments.
It also requires interoperability among
data repositories supported by standard
services and workflows. Interoperable
data repositories constitute an enabling
resource for meta-analysis.

2.1   Repositories of Experimental
Data
Public datasets have been created in re-
sponse to the growing demand for pub-
licly available repositories for high-
throughput gene expression data. Such
public repositories represent an impor-
tant resource for the biological research
community as they provide unre-
stricted access to microarray data pub-
lished by other researchers. As such,
they complement local in-house gene
expression databases by providing ref-
erence data for comparative studies.
Among them, the Gene Expression
Omnibus (GEO) repository developed
by the National Center for Biotechnol-
ogy Information (NCBI) is publicly
accessible on the NCBI website at http:/
/www.ncbi.nlm.nih.gov/geo [26].
GEO archives and helps disseminate
microarray and other forms of high-
throughput data generated by the sci-
entific community [27]. GEO data can
be viewed from the perspective of the
experiment or the gene. The experi-
ment-centric view presents the entire
study, while the gene-centric view dis-
plays quantitative gene expression mea-
surements for one given gene across a
dataset, with links to gene annotations.
Other efforts to archive experiments and
make them accessible to the whole com-
munity include the Stanford Microarray
Database (SMD) [28] (http://smd.
stanford.edu) and the ArrayExpress
database of microarray [29] (http://

4 http://www.ihtsdo.org
5 h t t p : / / w w w. n c i . n i h . g o v / c a n c e r i n f o /

terminologyresources
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www.ebi.ac.uk/arrayexpress), devel-
oped by the European Bioinformatics
Institute. All these repositories promote
standard exchange formats such as
MAGE-TAB [30]. Moreover, data sub-
mitted to these repositories are required
to have a common set of core elements.
As many other resources in this do-
main, including local experimental da-
tabases, data sets in public reposito-
ries are compliant with the standards
that def ine a minimum information
about a microarray experiment. Broad
adhesion to these standards facilitates
the publication and retrieval of data,
as it ensures consistency across
datasets.

In addition to such wide-scale
projects, more focused initiatives seek
to collect all published data on a given
medical topic. Specif ic pipelines and
services have been developed in con-
junction with such focused databases.
For example, the Oncomine initiative
seeks to collect all published cancer
microarray data (http://www.
oncomine.org). To date, this effort has
accumulated 18,000 cancer gene ex-
pression experiments. Automated analy-
ses can be performed to identify the
genes, pathways, regulatory networks,
and functional networks activated and
repressed in human cancer. As described
in [31], all cancer microarray data de-
posited in GEO and SMD are automati-
cally copied to Oncomine and then stan-
dardized.

Data repositories may be extended
with clinical data. With focus on three
types of tumors -- breast carcinoma,
bladder carcinoma and uveal mela-
noma -- the Integrated Tumor
Transcriptome Array and Clinical data
Analysis (ITTACA) centralizes public
datasets containing both gene expres-
sion and clinical data on these tumors
[32]. This system enables users to carry
out different class comparison analy-
ses, including the comparison of ex-

pression distribution profiles, tests for
differential expression and patient sur-
vival analyses and to compare personal
results with the results in the existing
literature (http://bioinfo.curie.fr/
ittaca).

2.2   Standard Annotations
The generation of large amounts of data
and the need to share and compare these
data bring about challenges for both
data management and data annotation
and highlight the need for standards.
The Microarray Gene Expression Data
(MGED) society is an international or-
ganization created in 1999 for facili-
tating sharing of functional genomics
and proteomics array data. MGED has
def ined the Minimum Information
About a Microarray Experiment
(MIAME) that corresponds to the
minimum information that must be re-
ported about a microarray experiment
to enable its unambiguous interpreta-
tion and reproduction. This standard has
been used for years worldwide. The
Microarray Gene Expression Object
Model (MAGE-OM) and resulting
markup language (MAGE-ML) provide
a mechanism for standardizing data rep-
resentation for data exchange purposes
[33]. Moreover, a common terminol-
ogy, the MGED Ontology (MO) has
been developed by the Ontology Work-
ing Group of the MGED society to
complement these standards. The ob-
jective of MO is to provide common
'terms for annotating experiments in
line with the MIAME guidelines, i.e.,
to provide the semantics to describe a
microarray experiment according to the
concepts specif ied in MIAME' [34].
(http://mged.sourceforge.net/ontolo-
gies/index.php.)

Similar efforts in the f ield of func-
tional annotation have established stan-
dard vocabularies for the annotation of
genes and gene products [35]. With the

aim of contributing to the unif ication
of biological information, the Gene On-
tology (GO) has been developed since
2000 [36, 37] and has been adopted by
most model organism databases, such
as the Gene Ontology Annotation
(GOA) database [38] (http://
www.ebi.ac.uk/GOA).

Moreover, some research communi-
ties have decided to standardize their
data models and data types to address
interoperability issues. One of the re-
quirements for a federated information
system is interoperability, i.e., the abil-
ity of one computer system to access
and use the resources of another sys-
tem. In order to meet this need, the U.S.
National Cancer Institute Center for
Bioinformatics (NCICB) has created
the cancer Common Ontologic Repre-
sentation Environment (caCORE) to
address interoperability issues in the
f ield of cancer research [39]. The
caCORE system includes controlled
terminologies such as the NCI Thesau-
rus (NCIT) [40], as well as common
data elements (CDEs), which are named
identifiers for the entities and attributes
found in databases.

However, despite these standardiza-
tion efforts, not all the data created,
stored, and made available in the bio-
medical domain are homogeneously
represented. Because most biomedical
systems have been developed indepen-
dently of each other, these systems do
not have a common structure, nor do
they share common data elements. Be-
cause determining the correspondences
between heterogeneous data sources is
complex and time-consuming, auto-
mated support is needed [41]. Several
approaches have been proposed, either
based on the comparison of data-ele-
ments (schema-level approaches) or
based on the comparison of value sets
of data elements coming from distinct
sources (instance-level approaches)
[42, 43, 44].
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2.3   Infrastructures and Services

Biomedical research requires to pool
and to integrate information from di-
verse data sources, which is facilitated
by the use of common data models and
common ontologies. Additionally, co-
ordinated research efforts typically
span multiple institutions. Therefore,
there is a need for an infrastructure that
supports such collaborative efforts,
with the objective of enabling more
eff icient access to the resources and
sharing distributed computational re-
sources. To address this need, the U.S.
National Cancer Institute (NCI) has
initiated a nationwide effort, called the
cancer Biomedical Informatics Grid
(caBIG), to develop a federation of
interoperable research information sys-
tems [45]. At the heart of the caBIG
approach to federated interoperability
is a Grid middleware infrastructure,
called caGrid. [46]. Moreover, this in-
frastructure is based on the caCORE
system mentioned earlier, which sup-
ports the creation of interoperable bio-
medical information systems. Similar
efforts in Europe have established grid
infrastructures for sharing computa-
tional resources in bioinformatics (e.g.,
http://www.embracegrid.info ) and en-
abling cooperative research in bio-
medical research [47], for example in
infectious diseases [48] and immune
diseases [49], as well as in cancer re-
search [50].

More generally, grid technologies
are expected to facilitate the launch and
ongoing management of coordinated
cancer research studies involving mul-
tiple institutions, to provide the abil-
ity to manage and securely share in-
formation and analytic resources.
Additionally, grid computing supports
high-throughput data analysis and pre-
dictive classif ication studies on large
datasets [51]. Grid computing can also
support the modeling of complex bio-

logical systems, which requires ad-
vanced computer simulations to bring
together knowledge at all the different
levels of biological understanding --
from the cell (e.g., gene function) to
the organism (e.g., physiology) -- in
order to provide a coherent theory of
biology, which can then be applied to
clinical medicine.

In conjunction with the develop-
ment of distributed databases and grid
computing, an increasing number of
tools in biomedical informatics have
been developed as Web Services, with
potential applications in genomic
medicine (e.g., [52]). Web Services of-
fer two major benefits for the biomedi-
cal community: interoperability and re-
usability. Web Services use standard
communication protocols over the
Internet, which makes them virtually
platform-independent. Instead of de-
veloping a specif ic service locally, de-
velopers can reuse Web Service com-
ponents in their own applications. With
the objective of implementing complex
data analysis processes, Web Services
must be associated with workflow man-
agement systems (e.g., [53]). Environ-
ments such as Taverna provide a lan-
guage and software tools to create and
execute workflows and to construct
highly complex analyses over public
and private data and computational re-
sources [54, 55].

In the near future, these efforts will
hopefully be strengthened by the cre-
ation of publicly available registries
that describe all these services in a stan-
dard manner. For example, Stevens et
al [56] recommend the use of ontolo-
gies to express the semantic informa-
tion associated with the description of
Web Services. The design of broad-
coverage formal models of tasks and
their representation as formal ontolo-
gies will facilitate the discovery of ser-
vices, their selection and their compo-
sition into dynamic workflows [57].

2.4   Meta-analysis
One advantage of integrating large num-
bers of microarray studies and compil-
ing them in a data-warehouse is that it
makes it possible to compare the re-
sults of different studies and to deter-
mine which methods are robust and pro-
duce consistent results across a range
of studies. There are, however, many
problems associated with the compari-
son of gene expression profiles across
disparate microarray data sets.  In stud-
ies performed in 2004 and 2007 by sev-
eral teams, the authors demonstrated
that the consistency of replicates in each
experiment exhibits a large degree of
variation. Different technologies
seemed to show good agreement within
and across labs using the same RNA
samples. The variability between two
labs using the same technology was
higher than that between two technolo-
gies within the same lab. Moreover, the
source of RNA samples can make a dif-
ference in microarray data [58, 59, 60].

Several methods have been developed
to address these variability issues in mul-
tiple, independent data sets generated on
various platforms. Among others :

• Comparative meta-profiling is used
in Oncomine to compare differen-
tial expression measured in each
data set [61]. In this approach, users
f irst select appropriate studies for
comparison, and then use meta-
analysis to identify the genes that
are signif icantly overexpressed or
underexpressed across multiple in-
dependent studies.

• SubMap is an unsupervised sub-
class mapping method, which
reveals common subtypes between
independent data sets. This method
revealed the correspondence
between several cancer-related data
sets. Notably, it identif ied common
subtypes of breast cancer associated
with estrogen receptor status, and a
subgroup of lymphoma patients
who share similar survival patterns,
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thus improving the accuracy of a
clinical outcome predictor [62].

The approach associating data integra-
tion and meta-analysis helps address sta-
tistical methodological issues [63]. Data
related to the same pathologic condi-
tion from different laboratories may be
analyzed (e.g. [64]). For example,
Bhanot et al have used classif ication
models with non-Hodgkin's lymphoma-
related microarray data from different
laboratories [65], and Lyman et al have
used meta-analysis techniques to detect
predictors of recurrence-free survival
in breast cancer [66]. Data integration
may also be used with data correspond-
ing to different diseases, for example
different types of cancers [67]. Differ-
ent kinds of experimental data can be
integrated (e.g., microarray and prote-
omics). Moreover, data from different
species can be integrated. For example,
English and Butte evaluated 49 obesity-
related genome-wide experiments in-
cluding microarray, genetics, proteomics
and gene knock-down from human,
mouse, rat and worm. They created an
integrative model and showed that in-
tersecting the results of experiments sig-
nif icantly improved the sensitivity,
specif icity and precision of the predic-
tion of obesity-associated genes [68].

3   Integrating Knowledge
Computable forms of knowledge in-
clude knowledge bases and ontologies.
Existing resources are often incomplete
and need to be enriched and integrated.
Incorporating prior knowledge into the
analysis of gene expression datasets has
been shown to improve the results.

3.1   Knowledge sources and ontologies
Multiple knowledge bases. The number
of data sources has grown tremendously

over the last decade. Frey et al mention
that around 900 biological public data-
bases (e.g., genomic, proteomic,
metabolomic, and others) were avail-
able in 2007, representing a vast amount
of information about genes, proteins,
diseases and their interrelations [1].
Besides repositories of experimental
data, many knowledge resources are
also publicly available. Such resources
typically compile manually curated
knowledge extracted from the biomedi-
cal literature and other sources. For
example Entrez Gene provides infor-
mation about genes, Online Mendelian
Inheritance in Man (OMIM) provides
information about genetic diseases and
GOA provides the functional annota-
tion of gene products.
Multiple ontologies. Ontologies have
been developed to represent the enti-
ties of biomedical interest and their re-
lations, in multiple subdomains and for
multiple levels of granularity. Figure 1
shows ontologies from genomics
(white), chemistry (blue), anatomy (yel-

low), and diseases (green). Some ref-
erence ontologies are domain-specif ic
such as the Chemical Entities of Bio-
logical Interest (ChEBI) for chemical
entities or the Foundational Model of
Anatomy (FMA) for anatomical enti-
ties [69]. Some ontologies are level-
specific such as GO at the cellular level,
or SNOMED at the organism level.
Ontologies can be overlapping in part.
For example, subcellular anatomical
entities are def ined in both the FMA
and the Cell Component axis of GO
[70]. In contrast, some ontologies may
reuse the entities def ined in other on-
tologies. For example, reasoning over
the anatomical location of diseases in a
clinical ontology can be delegated to
the anatomical ontology in which the
anatomical entities are def ined [71].
Ontology repositories. The use of on-
tologies is a key element to inter-
operability among resources. For this
reason, high-quality ontologies must be
available to the community, ideally at
no cost and without any constraints

Fig. 1   Interrelations among biomedical ontologies
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impeding their use or redistribution.
The Open Biomedical Ontologies
(OBO) are a collection of controlled
vocabularies freely available to the bio-
medical community. Web-based ontol-
ogy portals such as the BioPortal (http:/
/www.bioontology.org/ tools /por tal /
bioportal.html) allow users to browse,
search, and visualize ontologies (and
metadata) in the library, and to submit
an ontology to the library. Ontology
portals also tend to include features
popularized by the "Web 2.0" move-
ment, including the collaborative re-
view of ontologies by users [72]. The
need for innovative technology and
methods that allow scientists to record,
manage, and disseminate biomedical
information and knowledge in machine-
processable form gave rise, in part, to
initiatives such as the National Center
for Biomedical Ontology (NCBO) cre-
ated in 20056 [73].
Ontology federation. The development
of OBO ontologies is regulated within
the OBO Foundry, which defines a set
of shared principles governing ontol-
ogy development [74]. Knowledge in-
tegration will also benefit from the de-
velopment of top-domain ontologies,
such as BioTop [75]. Such ontologies
define the top-level classes of biomedi-
cal ontologies and can be used for link-
ing f iner-grained domain ontologies.
Of note, some recently created ontolo-
gies were designed to be interoperable
and to incorporate accurate representa-
tions of biological reality [74]. For ex-
ample, the PRotein Ontology (PRO)
includes connections to other ontolo-
gies, including GO. It is expected that
the connection of protein forms to GO
classes using appropriate relations will
support accurate functional annotation.
Analogously, relations defined between
protein classes and the OBO Disease

Ontology will facilitate disease under-
standing [76]. Until the development
of federated biomedical ontologies is
fully orchestrated by organizations such
as the OBO Foundry - if it ever is, there
will be a need for creating ad hoc bridges
across existing ontologies, which is one
of the objectives of the Unified Medical
Language System (UMLS)7 developed
by the US National Library of Medi-
cine. The UMLS Metathesaurus inte-
grates 1.4 million concepts from over
one hundred terminologies in use in life
sciences, as well as some 12 million
relations among these concepts. UMLS
concepts are not only inter-related, but
may also be linked to external resources
such as GenBank, providing easy access
to the knowledge contained in these re-
sources [77]. More generally, various ap-
proaches to aligning existing ontologies
are discussed in [78].
Semantic Web for Health Care and Life
Sciences. Knowledge integration efforts
have benef ited from the development
of Semantic Web technologies [21]. In
the past few years, the World-Wide Web
Consortium (W3C) has developed a set
of standards and tools to support the
vision of a flexible, integrated, auto-
matic and self-adapting Web. Some of
these technologies are now mature and
have started making an impact in the
life sciences. Semantic Web languages
include the Resource Description
Framework (RDF), a variety of data
interchange formats (e.g., RDF/XML,
N3, Turtle, N-Triples) and notations,
such as RDF Schema (RDFS), and the
Web Ontology Language (OWL), all
of which are intended to provide a for-
mal description of concepts, terms, and
relationships within a given knowledge
domain. OWL provides formal compu-
tational definitions, as well as tools for
reasoning, in order to facilitate ontol-

ogy development and ontology main-
tenance. Therefore most health science
ontologies, including those originally
developed in OBO format [79], have
been converted to OWL [80, 81].

3.2   Knowledge Enrichment
Standard terminologies, such as the
Gene Ontology, are widely used in da-
tabases and knowledge bases as con-
trolled vocabularies for functional an-
notations and largely facilitate
comparative functional analysis. How-
ever, the functional annotation of gene
products is not always consistent across
databases and often remains incomplete.
Although GO curators adhere to the
same protocols and standards while as-
signing GO annotations, specif ic anno-
tation procedures and the specialization
of curators vary across groups. Meth-
ods have been developed to assess the
consistency of GO annotation across
model organism databases (e.g., [82]).
Enriching biological knowledge bases.
Determining the function of  uncharac-
terized proteins remains a major chal-
lenge and is an active field of research.
Various knowledge sources have been
explored, including large scale protein-
protein interaction assays, global
mRNA expression analyses and system-
atic protein localization studies in [83]).
Various techniques have been explored
as well to generate functional annota-
tion predictions, among which informa-
tion theory-based semantic similarity,
based on existing GO annotations [84].

Methods based on natural language
processing and statistical techniques
have been widely used for years for
mining free text and extracting GO an-
notations. While the content of most
biological databases is acquired through
careful manual curation of literature
and data, the increasing volume of bio-
medical literature to be reviewed and6 http://www.bioontology.org/ 7 http://umlsks.nlm.nih.gov
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the increasing number of gene prod-
ucts in need of annotation are likely to
overload the manual curation process.
Consequently, text mining techniques
are often employed to retrieve and ex-
tract functional annotation from the lit-
erature. For example, GoPubMed uses
GO to organize the results of a PubMed
search [85]. The BioCreAtIvE initia-
tive, with tasks such as gene name nor-
malization and identif ication of func-
tional annotation from free text,
demonstrated that term recognition
techniques are suitable for real appli-
cations in biology [86]. However, au-
tomatic annotation techniques generally
require additional knowledge process-
ing and had lesser performance than
gene identif ication tasks. Daraselia et
al also showed the usefulness of com-
bining NLP techniques (protein anno-
tation extracted from Medline) with
additional knowledge (information
from protein-protein interactions
datasets) [87].
Enriching biomedical ontologies.
Analogous to the methods devoted to
quality assurance and enrichment of
knowledge bases, methods have been
developed for the evaluation of ontolo-
gies, including terminology enrichment
and consistency checking.

Terminology enrichment techniques
are used for identifying missing rela-
tions in terminologies. For example, GO
lacks explicit associative relations across
its three hierarchies, which may impede
the consistent clustering of gene prod-
ucts according to functional character-
istics. For instance, while the gene
APOC3 is associated with both the mo-
lecular function 'lipid transporter ac-
tivity' and the biological process 'lipid
transport', APOH is only annotated with
'lipid transporter activity'. To address
this issue, various approaches to sug-
gesting new relations among biologi-
cal terms have been proposed, based on
lexical and statistical phenomena.

Biological terms are often found as
proper substrings of other terms.
Compositionality of terms has been
used to suggest semantic relations
among GO terms directly [88, 89] or
through ChEBI terms [90]. Moreover,
Mungall proposed a formal language,
Obol, for def ining allowed composi-
tional patterns among terms from OBO
ontologies [91]. Statistical and data
mining techniques have also been ap-
plied to biological knowledge bases
annotated to the GO in order to auto-
matically extract candidate relations
among GO terms and help enrich on-
tologies with associative relations [92].

When ontologies are represented
with formal languages and def ined in
reference to formal upper-level ontolo-
gies, it becomes possible to validate ex-
isting relations among classes and to
identify new relations. OWL, the Web
Ontology Language, is often used to
represent the concepts and the relations
in ontologies. OWL is more expressive
than XML, RDF, and RDF-S, because
it contains additional features for de-
scribing properties and classes formally.
Such features include equivalence and
disjointness among classes, cardinality
of relations (e.g., "exactly one"), char-
acteristics of properties (e.g., symme-
try), and enumerated classes. Using the
formal semantics of the OWL language
makes it possible to reason about these
classes and their instances and to en-
sure the consistency of these ontologies.

3.3   Strategies for Analysis and
Applications
Key to the analysis of omics data is the
integration of prior knowledge. Of spe-
cial interest are methods that include
functional characteristics from the be-
ginning of the data analysis process,
integrate medical knowledge with bio-
logical knowledge, and combine min-

ing techniques with inference-based
knowledge processing.

The analysis of transcriptomic data
is classically carried out in two steps.
First, data are clustered according to
gene expression levels in order to cre-
ate three clusters: over-expressed, un-
der-expressed and invariant. Only sub-
sequently is functional information
introduced in order to characterize the
clusters "functionally". One of the limi-
tations of this approach is that func-
tional similarity does not contribute to
the clustering process. Methods includ-
ing functional annotation from the be-
ginning of the analysis have been pro-
posed (e.g., [93]). These methods rely,
for example, on semantic similarity
measures among genes based on func-
tional annotations [94].

Moreover, besides gene expression,
proteomic patterns, functional charac-
teristics of genes and the medical fea-
tures associated with a sample (e.g.,
phenotype, clinical history, environ-
mental factors, experimental condi-
tions) could contribute to the cluster-
ing process. Such characteristics can be
represented as UMLS concepts [95],
NCIT or SNOMED CT concepts [96,
97]. Once annotated to these ontolo-
gies, the datasets can be clustered in such
a way that the annotations themselves
participate in the clustering, along with
the expression prof iles of the genes.
More generally, knowledge integration
has been shown to increase the power
of analysis in several genomic studies.
Butte has developed an approach based
on the UMLS [95], while other authors
have integrated Entrez Gene and GO
[98]. Chabalier has proposed a method
for integrating information from the
KEGG pathway database and the GO
annotation repository into a disease
ontology [99].

Various data mining techniques have
been applied to biomedical data analy-
sis (e.g., [100], [101]). Among data
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mining techniques, association rule
mining, used widely in the area of mar-
ket basket analysis, can be applied to
the analysis of biological data as well.
Based on the frequencies of co-occur-
rence between a gene G and a pheno-
type P, a typical rule would be: "if P is
present, then G is present". Association
rules can reveal biologically relevant
associations between different genes or
between environmental effects and gene
expression prof iles. The mining tech-
niques may include negative rule gen-
eration (e.g., [102]) in addition to posi-
tive rule generation. Ideally, data
mining techniques should be combined
with inference-based knowledge pro-
cessing. For example, the classification
capabilities associated with ontologies
may be used to aggregate annotations
in order to improve the support and
confidence values of association rules.
More generally, knowledge bases and
inference may contribute to increase the
power of data mining techniques.

4   Conclusion
As biomedical research evolves from
traditional clinical and biological re-
search towards omics sciences and trans-
lational research, specif ic needs have
emerged, including integrating data col-
lected in research studies with patient
clinical data, linking omics knowledge
with medical knowledge, modeling the
molecular basis of diseases, and devel-
oping tools that support in-depth analy-
sis of research data. As such, transla-
tional research illustrates the need to
bridge the gap between bioinformatics
and medical informatics [103], and
opens new avenues for biomedical
informatics research.
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